

الطُهُوُرِيِّ لَيْمِنتِّ لَيَّ لَيْمِنتِّ لَيَّ لَيْمِنتِّ لَيْمِنتِّ لَيْمِنتِّ لَيْمِنتِّ لَيْمِنتِ لَيْمِنتِ

دراسة تحليلية

❖ للتغيرات الكيميائية والفيزيائية التي طرأت على خصائص المياه
 (المد الاحمر) ضمن منطقة ساحل ابين في محافظة عدن

إعداد: جيوفيزيائي/ نادر بدر باسنيد

مارس ۲۰۲۰م

تمهيد:

انطلاقا من حرصها الشديد على القيام بمهامها التي أنشئت من اجلها , واستشعار ها بتحمل المسؤولية تجاه الوطن والمواطن لتوضيح العديد من الامور التي تؤثر على المجتمع والتي تقع ضمن تخصصاتها ومحاولة ايجاد الحلول المناسبة القابله للتطبيق لحلها او للتخفيف من أثار ها السلبيه , فقد قامت هيئة المساحة الجيولوجية والثروات المعدنية وبناءً على تعليمات مباشرة وتوجيهات من الاخ د. عبدالسلام الحميدي الوكيل المساعد لشؤون المعادن في وزارة النفط و الاستاذ المهندس احمد عبدالله اليماني التميمي القائم بأعمال مدير عام هيئة المساحة الجيولوجية والثروات المعدنية الى مدير إدارة الجيولوجيا البحرية الاستاذ المهندس منصر عبدالله حسين البان بتشكيل فريق فني متخصص من كافة اقسام الادارة الاربع (قسم الجيولوجيا البحرية، الكيمياء، المسح البحري والبيئة البحرية) والنزول لموقع ساحل ابين في مديرية خورمكسر محافظة عدن و عمل دراسة حول ظاهرة اخضرار مياه البحر ونفوق العديد من الاسماك ومعرفة اسباب هذه الظاهرة والتوصل للحلول المناسبة للتخفيف من أثار ها في الوقت الحالي ومستقبلاً .

وعلى الفور قام الاستاذ المهندس منصر البان مدير إدارة الجيولوجيا البحرية بتشكيل الفريق الفني المؤلف من ثمانية اشخاص التالية اسمائهم:

- ۱) نادر بدر باسنید
- ٢) مصطفى طاهر علي
 - ٣) شاهينا عبدالقادر
- ٤) نجلى فضل بكريدي
- ٥) جلال محمد الميسري
 - ٦) جلال باصالح
- ٧) مازن محمد الماوري
 - ۸) سعید عمر عوض

وبعد اجتماع الفريق لتوزيع المهام وتحديد نطاق الدراسة على الخرائط وتوفير كافة مستازمات العمل الحقلي المطلوبة لتنفيذ الدراسة, باشر الفريق نزوله الميداني الى الموقع في صباح يومي الاحد والاثنين الموافقين للثامن والتاسع من شهر مارس للعام ٢٠٢٠م.

منهجية الدراسة:

اتبعت الدراسة منهجية محدده لتنفيذ هذه الدراسة يمكن تلخيصها ضمن الخطوات التالية:

- () النزول الميداني للفريق الفني الى موقع الدراسة ضمن نطاقه الساحلي وتوثيق المشاهدات الحقلية بالصور واخذ عينات مائية من خط الشاطئ (m) وبمسافة تباعد افقية تبلغ m 1500 .
 - ك) اخذ عينات مائية من مواقع تبعد مسافات m 650 و m 750 من خط الشاطئ باتجاه العمق وبمسافات تباعد افقية تبلغ m .
 - لات التحليل المختبري للعينات (كيمائي, فيزيائي, بيولوجي) وذلك في كل من مختبرات المؤسسة العامة للمياه والصرف الصحي ومختبرات هيئة المساحة الجيولوجية والثروات المعدنية
 - ٤) تفسير نتائج التحاليل المختبريه .

اهداف الدراسة:

- ١) وضع توصيف واضح لهذه الظاهرة وتحديد مستويات وقطاعات تأثيراتها .
- ٢) تحديد الاسباب المباشرة التي تزيد من حدة تأثير هذه الظاهرة على عدة قطاعات.
 - توضيح العلاقة بين زيادة وتيرة هذه الظاهرة والنشاط البشري .
- ٤) وضع حلول سهلة وقابلة للتطبيق قادرة على التخفيف من قدرات ونطاقات التأثيرات السلبية لهذه الظاهرة
 على الاقتصاد والصحة والبيئة .

ما هي ظاهرة النمو الطحلبي السريع او المفاجئ:

لاحظ سكان مدينة عدن يومنا هذا الاربعاء الموافق ٢٠٢٠/٣/٤م تغير لون مياه بحر ساحل ابين في مديرية خورمكسر محافظة عدن الى اللون الاخضر مع وجود رائحة كريهة للمياه نتيجة نفوق العديد من الاسماك على الساحل.

ان السبب في ذلك يعود الى ما يعرف بظاهرة النمو او الازدهار الطحلبي السام المفاجئ, حيث كانت الطحالب من النوع المجهري الدقيق (اي بالغ الصغر) خضراء اللون ... يؤدي ازدهار الطحالب عادةً الى استنزاف كميات هائلة من الاكسجين الذائب في المياه مما لا يسمح لبقية الكائنات الاخرى القريبة منها مثل الاسماك بالتنفس الامر الذي يؤدي الى نفوق العديد من الاسماك, سبب اخر وهو انه يمكن ان يكون نتيجة تراكم تلك الطحالب المجهريه الدقيقة في خياشيم الاسماك الامر الذي يؤدي في نهاية المطاف الى سد فتحات التنفس فيها وبالتالي نفوقها, ايضاً يمكن ان تفرز بعض الطحالب مواد سامه عندما تتناولها الاسماك والتي تؤدي الى نفوقها في الحال, ويمكن ان تلحق تلك السموم أضراراً بالغة بالإنسان اذا ما تناول تلك الاسماك النافقة .. لذلك يرجى الحذر.

تعرف ايضاً مثل تلك الظاهرة بالمد الاحمر, وهذا لا يعني ان تكون المياه مصبوغة باللون الاحمر .. حيث يمكن ان تكون بنية او خضراء او حتى بنفسجية حسب طبيعة ونوع الطحالب ... وهي ظاهرة معروفة منذ القدم عبر التاريخ وكان يطلق عليها احياناً حيض البحر.

يمكن لهذه الظاهرة "المد الاحمر", "الازدهار الطحلبي ألسام, "حيض ألبحر ان تسبب اضرار جسيمة بالثروة السمكية, كما انها يمكن ان تلحق اضرارا بالعديد من النواحي الاقتصادية والاجتماعية والبيئية كمشاريع تحلية مياه

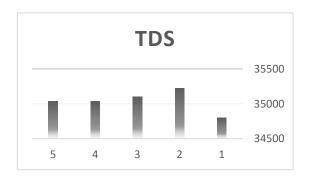
البحر والمشاريع السياحية ومشاريع حماية وتحسين الموائل البحرية وغيرها, وذلك لما تسببه من نفوق كميات هائلة من الاسماك والأحياء البحرية الاخرى ... يمكن لهذه الظاهرة ان يكون تأثيرها محدوداً لعدة ايام فقط ويمكن ان يستمر لفترة اطول وذلك بحسب توفر الظروف الملائمة لنمو وازدهار تلك الطحالب ولعل اهمها تصريف مياه الصرف الصحي غير المعالجة ضمن مياه البحار.

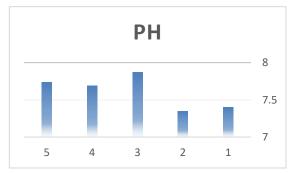
العمل الحقلي (الميداني):

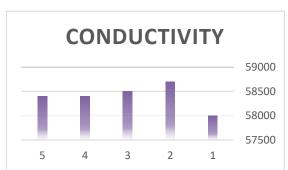
تم نزول الفريق الفني الى الموقع في اليوم الاول ضمن نطاقه الساحلي حيث تم أخذ عينتان مائيتان كما تم رصد وتوثيق الانواع البحرية النافقة على طول الساحل ضمن نطاق الدراسة, وفي اليوم الثاني تم اخذ ثلاثة عينات من عمق البحر على مسافات تتراوح بين ١٥٠-،٧٥٠ متر من خط الساحل .. اثنتان من العينات المائية أخذت ضمن نطاق الدراسة لساحل ابين, اما العينة الثالثة فقد تم اخذها من مقابل خليج الروزميت .

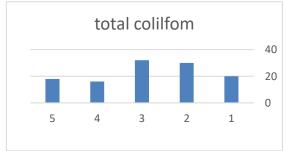
بلغت المساحة الكلية للمنطقة المشمولة بالدراسة حوالي 6000 m².

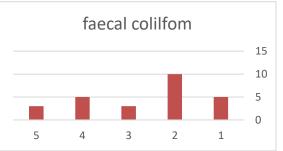
رسم توضيحي ١: المنطقة المشمولة بالدراسة

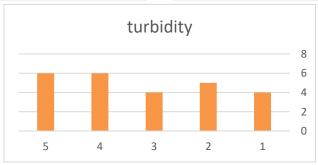





نتائج التحليل المخبري:


Sample	NO3	TDS	Conductivity	PH	Turbidity	Fecal Coliform	Total Coliform	Coordinates
1	33.3	34800	58000	7.4	4	5	20	N12°47'45.85'' E 45° 2'23.82''
2	11.2	35220	58700	7.35	5	10	30	N12°48'50.99'' E 45° 2'37.79''
3	6.8	35100	58500	7.87	4	3	32	N 12°47'32.60" E 45° 2'50.04"
4	21	35040	58400	7.69	6	5	16	N 12°48'16.24 E 45° 2'55.40''
5	19.3	35040	58400	7.74	6	3	18	N 12°47'4.69'' E 45° 2'55.55''





02175

Sample No : Date of Collection 8 . 3 . 2 Sample Collection by: Them	5050	Address Date of San Date of Res		3.	2020	
		WHO	YEMEN GL	UNIT		
CHARACTERISTIC	RESULTT	S GUIDE LINES	MIN	MAX	· Oldi	
Temperature	25	25	25	25	°C	
Colour	10	15	15	15	unit	
Turbidity	Ч	5.0	1.0	15	n.t.u	
PH. Value	7.4	6.5-8.5	6.5-8.5	5.5-9.0		
Conductivity	5800	0	450-1000	2500	Ms/cm	
Yotal Dissolved Solids (TDS)	348	000 1000	650	1500	Mg/L	
PH. Alkalinity as CaCo ₃	0					
Total alkalinity as CaCo ₃	(
Total Hardness as CaCo ₃	1	500	500	500	Mg/L	
Calcium Hardness as CaCo ₃						
Magnesium Hardness as CaCo ₃						
Carbonate Hardness as CaCo,						
Non Carbonate Hardness as CaCo,						
Chloride Cl		250	200	600	Mg/L	
Sulphate SO ₄	1	400	200	600	Mg/L	
Sodium Na*		200	200	400	Mg/L	
Nitrate NO ₃	33.3	45	45	60	Mg/L	
Nitrite NO ₂	9	0.1				
Silica SiO ₂						
Fluoride F		1.5	0.5	1.5	Mg/L	
Total Iron Fe		0.3	0.3	1.0	Mg/L	
Manganese Mn ⁺⁺		0.1	0.1	0.2	Mg/L	
Carbon Dioxide CO ₂					gr.L	
Dissolved Oxygen						
CATIONS Mg/L	Meq/L	ANIO	NS	Mg/L	Meg/L	
Calcium as Ca ⁺⁺		Chloride as	Cl.	1	-	
Magnesium as Mg ⁺⁺		Sulphate as	SO,			
Potassium as K*		Nitrate as	70000			
Sodium as Na*	1	Bicarbonate a		1	1	

Chief Lab. Sign.

02176

Supervisor Sign.

Address:

		WHO	YEMEN GU	UNIT		
CHARACTERISTIC	RESULT TS	GUIDE	MIN	MAX	COMO	
Temperature	25	25	25	25	°C.	
Colour	11	15	15	15	unit	
Turbidity	5	5.0	1.0	15	n.t.u	
PH Value	7.35	6.5-8.5	6 5-8 5	5.5-9.0		
Conductivity	58700		450-1000	2500	Ms/cm	
Total Dissolved Solids (TDS)	35220		650	1500	Mg/L	
PH. Alkalinity as CaCo ₃	6					
Total alkalinity as CaCo ₅	1					
Total Hardness as CaCo ₃		500	500	500	Mg/L	
Calcium Hardness as CaCo ₃						
Magnesium Hardness as CaCo						
Carbonate Hardness as CaCo ₃						
Non Carbonate Hardness as CaCo ₃						
Chloride Cl		250	200	600	Mg/I	
Sulphate SO ₄	1	400	200	600	Mg/	
Sodium Na ⁺		200	200	400	Mg/	
Nitrate NO ₃	11.2	45	45	60	Mg/	
Nitrite NO ₂	1	0.1				
Silica SiO ₂						
Fluoride F	1	1.5	0.5	1.5	Mg/	
Total Iron Fe		0.3	0,3	1.0	Mg/	
Manganese Mn ⁺⁺		0.1	0.1	0.2	Mg/	
Carbon Dioxide CO ₂						
Dissolved Oxygen						
CATIONS Mg/L	Meq/L	ANIC	ONS	Mg/L	Meq/I	
Calcium as Ca ⁺⁺		Chloride a		1	7	
Magnesium as Mg ⁺⁺	1	Sulphate a				
Potassium as K"	1	STATE OF STA	s No ₃			
Sodium as Na*		Bicarbonate			-	

Chief Lab. Sign.

02177

Sample No. Date of Collection: 9, 3. Sample Collection by 77.	2020	Date of Result 10 3 2020					
		WHO	YEMEN GI	JIDE LINES	UNIT		
CHARACTERISTIC	RESULT TS	LINES	MIN	MAX			
Temperature	25	25	25	25	-C		
Colour	7	15	15	15	unit		
Turbidity	4	5.0	1.0	15	ntu		
PH. Value	7.87	6.5-8.5	6.5-8.5	5.5-9.0			
Conductivity	58500		450-1000	2500	Ms/cm		
Total Dissolved Solids (TDS)	35100	1000	650	1500	Mg/L		
PH. Alkalinity as CaCo ₃	0						
Total alkalinity as CaCo ₃	,						
Total Hardness as CaCo ₃		500	500	500	Mg/L		
Calcium Hardness as CaCo ₁							
Magnesium Hardness as CaCo							
Carbonate Hardness as CaCo							
Non Carbonate Hardness as CaCo	03						
Chloride Cl		250	200	.600	Mg/L		
Sulphate SO,*		400	200	600	Mg/L		
Sodium Na [†]	-	200	200	400	Mg/L		
Nitrate NO.	6.8	45	45	60			
Nitrite NO ₂		0,1	23.5	00	Mg/L		
Silica SiO ₂		9/1					
Fluoride F		1.5	0.5	1.5			
Total Iron Fe		0.3	0.3	1:5	Mg/L		
Manganese Mn**			250	1.0	Mg/L		
Carbon Dioxide CO,		0,1	0.1	0.2	Mg/E		
Dissolved Oxygen							
213301VCU OXYGCI)							
CATIONS Mg/L	Meg/L	ANION	ue I	Mari I	2000		
Calcium as Ca**				Mg/L	Meq/L		
Magnesium as Mg**		hloride as	CI.	(1		
Potassium as K*		ulphate as	SO,		1		
Sodium as Na*		itrate as	No ₃				
40 148	В	icarbonate a	s HCO,		1		

Chief Lab Sign.

Supervisor Sign.

02178

Anne Supervisor Sign

Date of Collection 9 · 3 ·	2020	Date of Sample Lab 9. 3. 2020					
Sample Collection by Them		Date of Res	sult	10.3.	2020		
CHARACTERISTIC	mmar ii maa	WHO	YEMEN G	UIDE LINES			
CHARACTERISTIC	RESULT TS	LINES	MIN	MAX	UNIT		
Temperature	25	25	25	25	°C		
Colour	12	15	15	15	unit		
Turbidity	6	5.0	1.0	15	ntu		
PH. Value	7.69	6.5-8.5	6.5-8.5	5.5-9.0			
Conductivity	5840	o	450-1000	2500	Ms/cm		
Total Dissolved Solids (TDS)	35040		650	1500	Mg/L		
PH. Alkalinity as CaCo ₃	0						
Total alkalinity as CaCo ₃	1						
Total Hardness as CaCo ₃		500	500	500	Mg/L		
Calcium Hardness as CaCo ₃					1.00		
Magnesium Hardness as CaCo ₂							
Carbonate Hardness as CaCo ₃							
Non Carbonate Hardness as CaCo ₃							
Chloride CI		250	200	600	Mg/L		
Sulphate SO ₄		400	200	600	Mg/L		
odium Na*		200	200	400	Mg/L		
itrate NO ₃	21	45	45	60	Mg/L		
itrite NO ₂		0.1			MAIL		
llica SiO ₂							
uoride F		1,5	0.5	1.5			
otal Iron Fe		0.3	0.3		Mg/L		
anganese Mn**		0.1	0.1	1.0	Mg/L		
arbon Dioxide CO ₂			V ₁ (0.2	Mg/L		
ssolved Oxygen							
CATIONS Mg/L	Meq/L	ANION	c I	11-1			
ilcium as Ca**		nloride as		Mg/L	Meq/L		
agnesium as Mg**		Ilphate as	CI		1		
itassium as K*		100	SO ₄	1	1		
dium as Na*	carbonate as HCO ₃						

Sample No.: Address

9.3.2020 Them Date of Sample Lab. Date of Result Date of Collection Sample Collection by: 10.3.2020

CHARACTERISTIC	RESULT T	S GUIDE	YEMEN G	11007	
OTTAIN TENISTIC	NESULI II	LINES	MIN	MAX	UNIT
Temperature	25	25	25	25	-C
Colour	12	15	15	15	unit
Turbidity	6	5.0	1.0	15	n.t.u
PH. Value	7.74	6.5-8.5	6.5-8.5	5.5-9.0	
Conductivity	5840x	0	450-1000	2500	Ms/cn
Yotal Dissolved Solids (TDS)	3504	0 1000	650	1500	Mg/L
PH. Alkalinity as CaCo ₃	- 0				
Total alkalinity as CaCo ₃					
Total Hardness as CaCo ₃		500	500	500	Mg/L
Calcium Hardness as CaCo ₃					
Magnesium Hardness as CaCo ₃					
Carbonate Hardness as CaCo,					
Non Carbonate Hardness as CaCo ₃					
Chloride CI		250	200	600	Mg/L
Sulphate SO ₄		400	200	600	Mg/L
Sodium Na*		200	200	400	Mg/L
Nitrate NO ₃	19.3	45	45	60	Mg/L
Nitrite NO ₂	1	0.1			
Silica SiO ₂					
Fluoride F		1.5	0.5	1.5	Mg/L
Total Iron Fe		0.3	0.3	1.0	Mg/L
Manganese Mn ⁺⁺		0.1	0,1	0.2	Mg/L
Carbon Dioxide CO ₂					mg-c
Dissolved Oxygen					
CATIONS Mg/L	Meg/L	ANION	S	Mg/L	Month
Calcium as Ca**	,	Chloride as	Ci	Mg/L	Meq/L
Magnesium as Mg**		Sulphate as	SO,	-	
Potassium as K ⁺		Vitrate as	No.		-
Sodium as Na*		Bicarbonate as			

Remarks Supervisor Sign. Chief Lab Sign

	g.oa	l Analys	Date S Date o	ample Co	llected:	8.3.	20
Address	Sample Bottle No	Total	Faecal	Temp C"	Residuol Chlorine at Time of Sampling	Completed Test and Remarks	
Sea-water D	-1	20	5	/	~1	lm_9	ial
Sen- Vator (3)	2	30	10	7	~1	m_5a	A id
							1
							-
Action Ta					To Chie	f Lab.	
Salisface With (Total Sign. Cab Supervisor 7.71- Date: 9, 3.202	1 60	, lt	Con	nd t	accal	Colif	50m

1263

Republic of Yemen

Aden Local Water & Sanitation Corporation Bacteriological Analysis of Water

Date Sample Collected 9.3.2020

Date of Result 10.3.2020

				011100011		
Address	Sample Bottle No	Total	Faecal	Temp C	Residuol Chlorine at Time of Sampling	Completed Test and Remarks
Sea Water no	Ч	32	3	/	1	u-5 lof-)
Sea Worker M. D	5	16	5	1	,	m_s lost.
See Water No (5)	6	18	3	/	/	m_sidel

All the above Samples Contaminaled with (Total Coliforny) and (faccal Ghilliam)

Date: 10.3.2020

Signature Date:

الخلاصــة:

- ا) تعتبر ظاهرة النمو الطحلبي السريع او المفاجئ ظاهرة طبيعية في الغالب تظهر نتيجة ارتفاع تراكيز عناصر النيتروجين والفسفور (المغذيات الرئيسية للطحالب) في مياه البحار او المياه العذبة والتي تكون على شكل مركبات مثل النيترات والنيتريت والامونيا والتي تطرحها مياه الصرف الصحي الغير معالجة, حيث يمكن ان تؤدي الى خلق العديد من المشاكل من بينها نفوق عدد كبير من الاحياء البحرية بسبب النقص الحاد في الاكسجين الذائب في الماء الذي تسببه.
- ان استمرار عمليات تصريف مياه الصرف الصحي الغير معالجة في مياه البحر في كل من منطقة ساحل ابين والعريش والروزميت قد فاقم من تأثيرات ظاهرة النمو الطحلبي وأطال فترة بقائها الامر الذي ادى الى ارتفاع اعداد الاحياء البحرية النافقة.
- ٣) أظهرت نتائج الفحوصات المخبرية الكيميائية للعينات المائية انخفاضاً في قيم النيترات الناتجة عن تصريف مياه الصرف الصحي غير المعالجة في البحر, ويعود السبب في ذلك الى استهلاك الطحالب الكبير للنيتروجين من اجل عمليات البناء حيث يُعد النيتروجين (النيترات) مصدر اساسي الى جانب الفسفور في تغذية الطحالب بمعنى اخر ادت الطحالب دوراً مميزاً في تنقية البحر من تراكيز النيترات والامونيا.
- ٤) أظهرت نتائج الفحوصات المخبرية الفيزيائية للعينات المائية ارتفاعات في قيم الموصلية الكهربائية وارتفاع نسبة العكارة للمياه , وكلها تعود الى تأثيرات تصريف مياه الصرف الصحي الغير معالجة في البحر . اما بالنسبة الى قيم الـ PH فقد كانت متعادلة نتيجة انخفاض تراكيز المركبات الحمضية .
- أظهرت نتائج الفحوصات المخبرية البيولوجية للعينات المائية ارتفاعاً كبيراً في عدد المستعمرات للقولونية
 البرازية وهي ايضاً دليل على التأثير الواضح لمياه الصرف الصحى الغير معالج.
- بمكن ان يؤدي تناول الاسماك النافقة بفعل هذه الظاهرة الى مشاكل صحية قد تصل الى التسمم في المقابل ليس هناك اي مشكلة في تناول الاحياء البحرية ومن بينها الاسماك الطازجة الغير متأثرة بهذه الظاهرة
- ان الاصرار على استمرار عدم معالجة مياه الصرف الصحي قبل تصريفها في مياه البحر سيؤدي الى مشاكل
 اكبر واشد تأثيرات في المستقبل القريب جداً على كافة نواحي الحياة .

التوصيات:

تكمن اهم الحلول للتخفيف والحد من التأثيرات الاقتصادية والاجتماعية والصحية والبيئية لهذه الظاهرة عبر

- () إعادة تشغيل جميع محطات معالجة مياه الصرف الصحي في المحافظة والعمل على اطلاق مشروع محطة عدن الكبرى الجديدة لمعالجة مياه الصرف الصحي والتوقف عن الاستمرار في تصريف تلك المياه مباشرة في البحار.
 - ٢) وضع القوانين والنظم والتشريعات الملزمة للحفاظ على جودة مياه البحار ضمن معايير وطنية امنه
 - ٣) الاستمرار بمراقبة جودة المياه من خلال تطبيق تقنية الاستشعار عن بعد واستخدام الصور الفضائية
- ٤) تفعيل انظمة الانذار المبكر وسرعة انتشال الاسماك النافقة من المياه قبل ان تؤثر سلباً على الموائل البحرية
 او تتراكم على السواحل لتسبب مشاكل صحية وبيئية .

صور من النزول:

